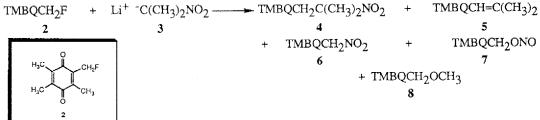
Fluoride as Leaving Group in $S_{RN}1$ Reactions of a Tetrasubstituted-1,4-Benzoquinone

Michel P. CROZET ^{a*}, Luc GIRAUD^a, Jean-François SABUCO^a and Patrice VANELLE^b


^aLaboratoire de Chimie Organique B, associé au CNRS, Faculté des Sciences et Techniques de Saint- Jérôme, Boite Postale 562, Université de Droit, d'Economie et des Sciences d'Aix-Marseille, 13397 Marseille Cedex 13, France

^bLaboratoire de Chimie Organique, Faculté de Pharmacie, 27 Bd J. Moulin, 13385 Marseille Cedex 04, France

Key Words: Quinone; Fluoride as Leaving group; Electron-Transfer, Nitronate; SRN1

Abstract: 2-Fluoromethyl-3,5,6-trimethyl-1,4-benzoquinone was synthesized and its reactivity in S_{RN}^{1} reactions compared to the reactivity of the chloro derivative previously described. This study reports the first examples of the displacement of fluoride in S_{RN}^{1} reactions involving a substitution at an sp^{3} carbon atom.

In the mechanistic studies of $S_{RN}1$ reactions of quinones, we have recently reported the C-alkylation of 2-chloromethyl-3,5,6-trimethyl-1,4-benzoquinone (TMBQCH₂Cl) **1** by 2-nitropropane anion followed the $S_{RN}1$ mechanism¹. If the displacement of fluoride is well documented for aromatic radical-nucleophilic substitution reactions², there is no study showing fluoride as leaving group in $S_{RN}1$ reaction at an sp³ carbon³. In order to prepare new bioreductive alkylating agents exhibiting only electron transfer reactivity and to extend the $S_{RN}1$ reaction to a fluoro compound, we have synthesized 2-fluoromethyl-3,5,6-trimethyl-1,4-benzoquinone (TMBQCH₂F) **2** and studied its reactivity in a classical electron-transfer C-alkylation reaction. The fluoro compound **2**⁴ was prepared from trimethylhydroquinone as described for the chloro derivative **1** following Middleton method⁵ with diethylaminosulfur trifluoride (DAST) for the fluorination step. The quinone **2** reacts with **3** under various experimental conditions to give the products reported in the table.

1063

Entry ^a	Solvent	Scavenger (mol. equiv.)	% Proportions ^b						
		% Yield C-alkylation		4	5	6	7	8	2 (rec.)
1	СН3ОН	-	50	52	14	14	7	13	-
2	DMF	-	50	40	25	8	27	-	3
3	DMSO ^c	-	66	43	35	4	18	-	-
4	DMSO	-	70	53	29	3	15	-	-
5	DMSO	CuCl ₂ (0.01)	54	42	31	3	19	-	5
6	DMSO	CuCl ₂ (0.1)	32	28	29	3	20	-	20
7	DMSO	$CuCl_2(1)$	10	8	12	3	6	-	71
8	DMSO	(tert-Bu)2NO [•] (0.1)	40	16	39	6	16	-	23
9	DMSO	(<i>tert</i> -Bu) ₂ NO [•] (1)	38	26	28	3	18	-	25

 Table

 Influence of experimental conditions in the reaction of 2 with 3.

^aAll reactions were irradiated at room temperature during 24h by using one equivalent of 2 and 3 under argon in a degassed solvent with two 60 W fluorescent lamps. ^bProportions calculated from ¹H NMR spectra. ^cSolvent not degassed.

The best yield (70%) of C-alkylation products is obtained in degassed DMSO (entry 4) but this yield is lower than from 1 and the proportion of ethylenic product 5 is noteworthy more higher. In this case, the nitrous acid elimination leading to 5 is favoured by the presence of the basic fluoride anion. As from 1, we also have observed the formation of nitro and nitrite derivatives 6 and 7 but in higher proportions, which can be explained as a result of the nitrite ion formed in elimination reaction. An ionic substitution of fluoride being unlikely⁶, 6, 7 and 8 also are formed by S_{RN}1 reaction resulting of entrainment⁷ by the nitronate. The addition of classical scavengers³ (CuCl₂, di-*tert*-butylnitroxide) gives effective inhibition of C-alkylation (entries 5 to 9) which increases when using higher concentrations.

In conclusion, these results show that 2-fluoromethyl-3,5,6-trimethyl-1,4-benzoquinone 2 reacts with the anion of 2-nitropropane 3 in good yields to give C-alkylation by S_{RN} mechanism and thence other fluoro electrophiles should be designed for electron transfer reactions at sp³carbon atoms.

ACKNOWLEDGMENT

The support of this work by Rhône-Poulenc Rorer S. A. is gratefully acknowledged.

REFERENCES AND NOTES

- 1. Crozet, M. P.; Giraud, L.; Sabuco, J.-F.; Vanelle, P.; Barreau, M. Tetrahedron Lett. 1991, 32, 4125-4128 and references therein.
- (a) Rossi, R. A.; de Rossi, R. H. ACS Monograph 178, The American Chemical Society, Washington D. C. 1983 and references therein. (b) Savéant, J.-M. Adv. Phys. Org. Chem. 1990, 26, 1-130.
- Bowman, W. R. Photoinduced Nucleophilic Substitution at sp³-Carbon in *Photoinduced Electron Transfer*, Fox, M. A.; Chanon, M. Eds.; Elsevier: Amsterdam, 1988, Part C, chap. 4. 8, pp. 421-486.
- 4. 2, Yellow-orange solid, mp 46 ° C (pentane), ¹H NMR (CDCl₃, 200 MHz, ppm) 2.05 (s, 3H), 2.06 (s,

3H), 2.17 (d, ${}^{5}J_{H,F} = 5$ Hz, 3H), 5.36 (d, ${}^{2}J_{H,F} = 47$ Hz, 2H).

- 5. Middleton, W. J. J. Org. Chem. 1975, 40, 574-578.
- 6. Parker, R. E. Adv. Fluorine Chem. 1963, 3, 63-91.
- 7. Kornblum, N. Angew. Chem. Int. Ed. Engl. 1975, 14, 734-745.

(Received in France 21 November 1991)